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any potential climate model should perform well on these
tests. In this paper we will present the results from theseThe spectral element method is implemented for the shallow

water equations in spherical geometry and its performance is com- test cases after first comparing and contrasting the spectral
pared with other models. This is the first step in evaluating the element method with global spectral methods and de-
suitability of spectral elements for climate modeling. The potential scribing the details of the model specific to spherical ge-
advantages and disadvantages of spectral elements over more con-

ometry.ventional models used for climate studies are discussed. The
method requires that the sphere be tiled with rectangles, for which
we make use of the gnomonic projection to map the sphere onto
the cube. To measure the performance of the method relative to 2. SPHERICAL HARMONICS AND
other models, results are presented from a standard suite of shallow

SPECTRAL ELEMENTSwater test cases for the sphere. These results confirm the spectral
accuracy of the method. Q 1997 Academic Press

Global atmospheric modeling is in one sense easier than
ocean modeling. The geometrically complex ocean basins
are replaced by the surface of a sphere. The sphere has1. INTRODUCTION
no boundary, and for boundary-less or periodic domains
spectral methods have unsurpassed accuracy. For theThe spectral element method [18, 17], has several

potential advantages over conventional spherical har- sphere, the natural basis functions are spherical harmonics,
and indeed, the majority of all major climate models inmonic spectral models used in atmospheric modeling.

This fact, along with the recent success of the spectral use today are spherical harmonic-based spectral methods
[3, 8]. We thus first describe the advantages and disadvan-element method in ocean modeling [16, 12, 9] has

prompted us to consider its use in global climate model- tages of this approach and show that spectral elements are
potentially very competitive.ing. Spectral elements combine the accuracy of conven-

tional spectral methods and the geometric flexibility of In addition to high accuracy, spherical harmonic spectral
methods can provide a completely isotropic representationfinite element methods. In the spectral element discretiza-

tion, the computational domain is broken up into rectan- of a scalar function on the sphere. Any finite difference
model cannot have this property, since the only isotropicgular regions called elements, and within each of these

elements all variables are approximated by polynomial grids would be those with grid points chosen to be the
vertices of a platonic solid, and the largest such grid comesexpansions. The discrete equations are derived by using

a Galerkin or integral form of the equations to be solved from the dodecahedron which has only 20 vertices. The
common latitude-longitude grid is extremely nonisotropic,in conjunction with a suitable set of test functions and

quadrature formula. clustering points near the poles resulting in a severe CFL
condition. This ‘‘pole problem’’ is naturally avoided by theThe first step in evaluating the suitability of spectral

elements for climate modeling is to implement the method use of spherical harmonics. Another advantage of spherical
harmonics is that they are eigenfunctions of the Laplacein spherical geometry and measure its performance relative

to other methods with a full range of numerical simulations. operator on the sphere. This property makes it very easy
to invert the linear elliptic operators required for semi-We have modified the oceanic spectral element model in

[12, 9] for this purpose, and we adopt the now standard implicit time stepping schemes.
Spherical harmonics also have some disadvantages, thesuite of shallow water test cases proposed in [21]. The

shallow water equations have many of the difficulties asso- most notable being their high cost. Unlike the fast fourier
transform (FFT), the discrete spherical harmonic trans-ciated with the dynamical aspects of climate modeling and
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form (DST) is computed by direct methods since it is cur- 3. THE SPECTRAL ELEMENTS DISCRETIZATION
rently unknown if a practical fast DST exists. Letting N 2

As mentioned in the Introduction, the spectral elementbe the number of grid points, the computational cost of
model used for this work is the one described in [12], thethe DST is O(N 3). This is a factor of N larger than the
only differences coming from the complications of spheri-cost of all other aspects of climate models. Consequently,
cal geometry and in the treatment of the diffusion term.at high resolutions the transforms will completely dominate
In this section we give a brief summary of the spectralthe computations. In addition to this drawback, the DST
element discretization. For a more thorough review of thisis also difficult to implement on distributed memory ma-
material; see [17]. The details relevant to the implementa-chines. Every spectral coefficient computed requires
tion of the method in spherical geometry are described indata from every grid point, resulting in a large amount
the next section.of interprocess communication. Last, it is difficult to

The spectral element discretization is particularly simpleincorporate local mesh refinement in global spectral
because of a clever combination of an integral form ofmodels.
the equations, the family of test functions used, and theOn the sphere, spectral elements have most of the advan-
quadrature formula chosen to approximate integrals. Thetages of spherical harmonics. Due to the element bound-
procedure is as follows: First an integral form of the equa-aries and lower spectral degree, they are not quite as accu-
tions is chosen. To do this, both sides of the equations arerate for a given resolution, but they do converge
multiplied by a test function and integrated over the entireexponentially fast under mesh refinement. Spectral ele-
computational domain (in our case, the surface of thements do not have any pole problems since the sphere can
sphere). The sphere is then tiled with rectangular elementsbe tiled with squares of approximately the same size and
and the integrals are written as the sum of integrals overthus avoid clustering points at the poles. By using a local
each element. The element integrals are then approxi-coordinate system within each element, any singularities
mated by Gauss–Lobatto quadrature, and in each elementin the coordinate system can be avoided. Spectral elements
we choose for our set of test functions the associateddo have the disadvantage that it is no longer trivial to
Gauss–Lobatto Cardinal functions [12, 4]. Also within eachinvert the linear differential operators required for semi-
element we take the same Cardinal functions as our basisimplicit time stepping schemes. As of yet we have not
functions for representing the dependent variables.found an efficient way to do this.

Except for the choice of a time-stepping scheme, theThe spectral element method also has an O(N 3) com-
resulting integral relations completely specify how theplexity due to the many Legendre transforms that must
equations are to be solved. Remarkably, this leads us tobe performed within each element. However, in this case,
a simple Legendre spectral transform method within eachN refers to the spectral degree used in each element. Since
element. Derivatives are calculated with Legendre trans-the ratio of elements to spectral degree N can be controlled,
forms on the Gauss–Lobatto grid. Because of this grid andN can be kept small, thus keeping the O(N 3) cost of the
the associated Cardinal functions, the only communicationtransforms in line with the rest of the model. Spectral
between elements occurs at the element boundaries, whereelements are ideal for parallel machines. The communica-
neighboring elements share common points. At thesetion within each element is global, but elements only re-
points the terms appearing in the equations are multiple-quire boundary information from their neighboring ele-
valued and the required area-weighted averaging is speci-ments. Thus when each processor of a parallel machine can
fied by the discretized form of the equations. This averag-handle one or more elements, communications overhead is
ing is independent of the flow and thus does not result infound to be very low [9].
any type of upwinding.Perhaps the biggest advantage of the spectral element

Following the lead of [16, 12], we use the third-ordermethod is that its use of unstructured grids provides a very
Adams–Bashforth time stepping scheme. This explicitnatural setting for local mesh refinement, allowing tasks
scheme requires information at two previous time levels,such as regional climate modeling or resolving local topo-
so a fourth-order Runge–Kutta scheme is used to startgraphical features to be carried out within a global
the model.model. Higher resolution can be obtained in a given

region by using a larger number of smaller elements in
that region. This can be accomplished by using variable-

4. SPECTRAL ELEMENTS ON THE SPHEREsized elements which can be made to fit conformally. Ex-
amples of such grids for the ocean can be seen in [9, 12].
There are also automated methods for generating such The first step in applying the spectral element method

to spherical geometry is to tile the sphere with rectangulargrids, like ‘‘paving’’ [2]. Yet another possibility is to switch
to a nonconforming spectral element method (such as in elements, or regions that can be easily mapped to rectan-

gles. This tiling is most easily accomplished by inscribing[1, 11]).
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write the shallow water equations in this coordinate system,
we first start with their vector formulation

­v
­t

5 2(z 1 f )k̂ 3 v 2 = S1
2

v ? v 1 gHD,

­h
­t

5 2= ? (hv),

where v is the velocity vector, h is the thickness of the
fluid, hs is the height of the underlying mountains, and

H 5 h 1 hs , z 5 k̂ ? = 3 v, f 5 2V sin(u).

Let x and y be the Cartesian coordinates in a face of the
cube. On the sphere, we denote longitude by l, latitude
by u, and the associated unit vectors by l̂ and û. We will
denote the derivative of the mapping from (x, y) R (l, u)
by the matrix D,

D 5 Scos(u)lx cos(u)ly

ux uy
D,FIG. 1. The cube projected onto the sphere. Each of the six faces of

the cube has been divided into an 8 3 8 array of elements.

where a subscript of either x or y represents differentiation
with respect to x or y. The Jacobian of the transformation

a polyhedron with rectangular faces inside the sphere and is given by the determinant of D. The formulas for D, D21,
then using the gnomonic projection (projection from the the mapping functions and the other metric terms which
center of the sphere) to map the surface of the polyhedron appear below are given in the Appendix, where it can be
to the surface of the sphere. The most elementary such seen that these terms are completely free of any singular-
polyhedron is the cube, which creates six large elements. ities.
One can then further divide each of these elements into To solve the shallow water equations for the velocity,
smaller elements, and the projection onto the sphere of we must pick a set of basis vectors and solve for the coeffi-
such a configuration is shown in Fig. 1. Each of the six cients of the velocity when expressed in terms of these
faces of the cube has been divided into an 8 3 8 array vectors. The choice of the spherical coordinate system
of elements.

The cube has the further advantage that, modulo
v 5 u1l̂ 1 u2ûrotations, there is only one mapping which, along with

its derivatives, can be easily derived analytically (see the
is particularly troublesome since the coordinates are dis-Appendix). Further subdividing each face of the cube
continuous at the poles. One could consider using sphericalinto smaller elements is now a simple matter since we
coordinates in the elements which are near the equatorare working in a square domain with Cartesian coordi-
and a rotated spherical coordinate system in those elementsnates. More complicated tilings of the sphere would allow
near the poles. However, the most natural choice is thatgreater flexibility for local mesh refinement, at the cost
associated with the coordinate system we are using for theof complicating the mappings. The approach taken in
independent variables x and y, and this choice also gives[12], if modified to handle the polar singularities, could
us the most compact form of the transformed equations.also be applied to an arbritrary tiling of the sphere. The
Definingmethod only requires that the sphere be subdivided

into regions which are then conformally (as opposed to
x 5 D21l̂, y 5 D21û,gnomonically) mapped to rectangles. This type of map-

ping and the associated metric terms must be approxi-
we can then writemated numerically.

We will refer to the natural Cartesian coordinates in
each face of the cube as the cube coordinate system. To v 5 u1l̂ 1 u2û 5 v1x 1 v2 y
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and the components of the velocity vector v in the (l, u) Since each of the six elements is using a different coordi-
nate system, the communication between an element onand (x, y) coordinate systems, in matrix notation, are re-

lated by one face of the cube and an adjacent element on a different
face is slightly more complex than the communication be-
tween elements contained within a single face of the cube.
All vector quantities passed to an element from a neighborSu1

u2
D5 D Sv1

v2
D.

on a different cube face must first be mapped to the correct
coordinate system. Denoting the different coordinate sys-
tems of two adjacent elements by a subscript of A and B,We must now write the shallow water equations for the
if a vector v is writtendependent variables h, v1 , and v2 . To do this, we take each

vector and differential operator appearing in the shallow
water equations and write them in matrix notation in the
cube coordinate system:

v 5 5S
a1

a2
D, A coordinate system

Sb1

b2
D, B coordinate system,

v ? v 5 Sv1

v2
DT

DTD Sv1

v2
D,

then the coordinates can be related by mapping from coor-
k̂ 3 v 5 D21 S0 21

1 0 DD Sv1

v2
D, dinate system A to spherical coordinates and then to coor-

dinate system B:

=h 5 D21D2T Shx

hy
D, Sb1

b2
D5 D21

B DA Sa1

a2
D.

= ? v 5 1
­

­x
­

­y
2

T

Sv1

v2
D1 pT Sv1

v2
D, 5. MESH REFINEMENT AND OPERATION COUNTS

Spectral element methods, being a form of h 2 p type
finite element methods, allow for two types of mesh re-
finement. One can keep the number of elements fixed

z 5 3DT S0 21
1 0 DD2T 1

­

­x
­

­y
24

T

Sv1

v2
D1 qT Sv1

v2
D, and increase the spectral degree used in each element, or,

keeping the spectral degree fixed, one can subdivide the
elements into smaller elements. Both types of mesh re-
finement have advantages, the former method providing

where p and q are 2-vectors containing additional metric exponential convergence but at a higher computational
terms. For efficiency, p, q, and all the 2 3 2 matrices which cost than the latter method, which only converges algebrai-
appear in the above formulas are analytically derived and cally.
their values at each grid point are precomputed and stored There are two problems with using high spectral degree
for use in the model. The method used to derive these within each element, both related to the cost of the method.
expressions is given in the Appendix. These are most easily illustrated in a one-dimensional

The final equations have the form problem, where we have M elements, each using a degree
N 2 1 Legendre polynomial (requiring N grid points inside
each element) for a total of MN grid points.Sv1

v2
D

t
5 2(z 1 f )D21 S0 21

1 0 DD Sv1

v2
D2 D21D2T Sfx

fy
D, The first problem is the expense of the spectral trans-

forms. The cost of performing one Legendre transform (or
related operations like computing derivatives) on N points
is O(N 2), making the cost of performing one time step

ht 5 2 1
­

­x
­

­y
2

T

Shv1

hv2
D2 pT Shv1

hv2
D, in a spectral element model O(MN 2). Thus one can see

increasing N while holding M fixed will become much more
expensive than increasing M while holding N fixed. How-
ever, since modern computers are very efficient at per-

where forming these kinds of operations and the transforms rep-
resent only a percentage of the total calculations, this
drawback is not significant except at very large values of N.f 5 Asv ? v 1 gH.
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TABLE I computationally more expensive because of the factors
mentioned above. The choice of N 5 8 is in the rangeGrids Used for Various Models
typically used for most spectral element methods.

Spectral Grid Dt in Figure 2 can also be used to establish the algebraic con-
Method coefficients points seconds vergence of the spectral element method when N is held

fixed and M is increased. The fact that the curves connect-
Spec. elem. 150 3 8 3 8 9600 9600 120

ing results with various M at a fixed N are approximatelySpec. elem. 486 3 8 3 8 31104 31104 72
straight lines when plotted on a log–log scale shows thatSpec. elem. 1734 3 8 3 8 110976 110976 45
the l2 error is proportional to a power of CPU time. AndSpec. elem. 24 3 16 3 16 6144 6144 90
CPU time is easily shown to be proportional to a powerSpec. elem. 96 3 16 3 16 24576 24576 45
of M when N is held fixed; thus the l2 error is proportional

Spec. elem. 6 3 24 3 24 3456 3456 50
to a power of M and, thus, the method converges algebrai-Spec. elem. 6 3 40 3 40 9600 9600 10
cally in M.Spec. elem. 6 3 56 3 56 18816 18816 5

To establish the exponential convergence of the methodNCAR T42 (64 3 128) 1849 8192 1200
when M is held fixed and N is increased, data from all ofNCAR T63 (96 3 192) 4096 18432 900

NCAR T106 (160 3 320) 11449 51200 600 the seven test cases is plotted in Fig. 3. The lines drawn
NCAR T213 (320 3 640) 45796 204800 360 are the least squares fit to the data points which are plotted

as circles. Except in test case 5, the lines show the almost
Note. Spec. elem. M 3 N 3 N refers to the spectral element model

perfect exponential decay of the error as a function of N,with M elements, each containing an N 3 N grid. The time steps are
which is the number of grid points on a side per element.given to show the more severe CFL restriction when the spectral element

mesh is refined by keeping M fixed and increasing N, as opposed to The lack of convergence in test case 5 is due solely to
keeping N fixed and increasing M. For comparison, specifications are uncertainties in the approximation used for the exact solu-
also given for the NCAR spherical harmonic spectral model [13, 14] with tion described in Section 7.2.
the standard triangular truncation and the dimensions of the associated

For this study, we do not attempt to use the shallowlatitude–longitude grid given in parenthesis. The NCAR model uses a
water test case results to compare the relative efficiencysemi-implicit time stepping scheme, allowing for much larger time steps

than in an explicit model. of different numerical methods. A true comparison would
involve running optimized versions of all the codes for a
real model of the atmosphere. In these models, often the
majority of computations are spent on physical processesThe second, more severe problem is the CFL condition

associated with increasing N over M. As with most spectral
methods for nonperiodic domains, the quadrature points
used for the Legendre transforms cluster grid points near
the boundaries of the elements. When a high spectral de-
gree is used in the elements, this clustering creates a more
restrictive CFL condition for the size of the time step. For
the shallow water equations, the time step Dt is propor-
tional to the mesh size Dx. With equally spaced points, Dx,
and thus Dt, would be inversely proportional to MN; but
in a spectral element model, due to the clustering of the
Legendre points, Dx and Dt are inversely proportional to
MN 2 (as shown in Table I). Thus it is significantly more
expensive to increase N rather than M.

In practice, one must strike a balance between accuracy
and computational cost by adjusting M and N to their most
efficient values. A thorough study of this issue for shallow
water test case 7 (described in Section 7) is shown in Fig.
2. The l2 error versus CPU time (IBM RS6000 workstation)
required to run the test case are plotted for various values FIG. 2. The l2 error and CPU time are plotted from 13 different runs

of the spectral element model using various numbers of elements M andof M and N. The plot shows that, except at very low resolu-
various values of spectral degree N within each element. Lines connecttion, the configuration of the model which requires the
results using a fixed value N and steadily increasing M. For each N, theseleast amount of CPU time to achieve a given l2 error is N
curves show how the errors decrease while CPU time increases as the

in the range of 8–16 and M chosen large enough to achieve mesh is refined by increasing M. The plot shows that the most efficient
the desired error. Using larger values of N results in a configuration of the model is N in the range of 8 to 16 and M chosen to

obtain the desired resolution.more accurate solution with fewer grid points, yet it is
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FIG. 3. Exponential convergence under mesh refinement for the spectral element method. The circles represent the log10 of the l2 norms for
various N. The lines drawn are the least-squares fit to the data. Each of the six elements uses a grid of size N 3 N.

not present in a shallow water model, and thus the shallow the shallow water test cases. Taking this factor to be 10,
then, we can conclude that the spectral element methodwater test cases are not ideally suited for this kind of

comparison. Also the results would depend greatly on the is faster per grid point than the NCAR spherical harmonic
method at resolutions above T169 (Ns 5 254). In Sectioncomputer of interest. For example, on vector supercomput-

ers at moderate resolution, it is doubtful that any method 7.2, we show that for the realistic test cases, the NCAR
model and the spectral element model have about the samewill be able to do as well as a spherical harmonic model

such as the NCAR spectral model [14]. But as the resolu- accuracy per grid point (verified up to T106). If this holds
at higher resolutions, we can conclude that spectral ele-tion is increased, the NCAR model will start to become

more expensive than other methods. For parallel comput- ments will be more efficient than spherical harmonic meth-
ods at resolutions above T169.ers the situation may be different since spectral/finite ele-

ment or finite difference methods require much less inter- A summary of the specifications of the grids used in
this work is given in Table I, along with similar statisticsprocessor communication and, thus, could conceivably run

faster even if they require a greater number of computa- associated with conventional spherical harmonic spectral
models. We point out a common misconception about thetions to achieve a given accuracy.

We can get a crude estimate of relative efficiency by resolution of spherical harmonic models: Their resolution
is better approximated by the degrees of freedom in thecomparing operation counts per grid point for one time

step. The NCAR spectral model uses a grid of Ns 3 2Ns model, which is the number of spectral coefficients re-
tained, not the number of grid points. The number ofwith a cost of
grid points is misleadingly large due to two factors: First,
‘‘efficient’’ quadrature formulas do not exist for the sphere8.5N 3

s 1 214N 2
s log Ns 1 O(N 2

s)
[19] and the formulas currently in use require twice as many
points as spectral coefficients. Second, the calculations arefloating point operations [7]. Neglecting the lower order
de-aliased which inflates the number of points required byterms, the cost per grid point is 4.2Ns 1 107 log Ns . Our
another factor of 9/4. Thus at a typical resolution of T42,implementation of the spectral element model, with M
in which spherical harmonics up to degree 42 are retained,elements each containing an N 3 N grid has an operation
there are exactly 432 5 1849 real-valued spectral coeffi-count of
cients, but the associated grid has 64 3 128 5 8192 points.

24MN 3 1 O(MN 2).

6. THE BOYD–VANDEVEN FILTER
Again neglecting the lower order terms and using the most
efficient value of N 5 8, the cost per grid point is 192. As mentioned in [21], the addition of a diffusion term

to damp small scales may improve the solutions of the testThus at almost all resolutions the spectral element model
will be faster per grid point per time step than a spherical problems. Furthermore, spectral element methods are not

usually de-aliased, and thus the aliasing errors generatedharmonic-based spectral method.
This advantage is quickly lost by the ease at which a by the nonlinear terms must be controlled with a diffusion

term or the method will be unstable. There may also beglobal spectral model can use a semi-implicit time stepping
scheme, allowing for a time step 6 to 10 times larger for other instabilities associated with the nonlinear terms. As
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where

wk 5 5
1, k , s

s Sk 2 s
N 2 sD, s # k # N.

In addition to the filter order p, we have introduced two
more parameters, a filter ‘‘viscosity’’ e and a filter lag
coefficient s. The value of e can range from 0 (no filtering)
to 1 (full BV filter). The value of s represents how much
the filter is lagged. For example, setting s 5 2N/3 can be
thought of as applying the filter only to the remaining Ad of
the spectrum of f. The values we use for these parameters
are given at the end of this section.

The adaptation of the BV filter to the spectral element
model is straightforward but somewhat involved. The basis
functions used within each element in our formulation of
the spectral element method are the Legendre–Cardinal

FIG. 4. The Boyd–Vandeven filter of order p 5 3 (dotted line), p 5 functions. Since the N Legendre–Cardinal functions are
6 (dashed line), and p 5 12 (solid line).

linear combinations of the first N Legendre polynomials,
the dependent variables u, v, and h can be expanded
equally well in terms of Legendre polynomials. This canis often the case, we have found experimentally that a
be done on our Gauss–Lobatto grid with the use of thediffusion term successfully controls all these instabilities.
Gauss–Lobatto transform [6, p. 59]. So within each ele-We note the model will successfully integrate the shallow
ment, we first expand u, v, and h in terms of Legendrewater equations without any type of diffusion if the nonlin-
polynomials, apply the filter, and then transform back. Forear terms are removed.
two-dimensional elements, this entire operation is appliedInstead of a more traditional diffusion operator, we have
twice, once in each direction. Each application can be ex-chosen to use the Boyd–Vandeven filter (BV filter), a form
pressed as a matrix vector product, and the cost is theof the Vandeven filter [20] developed by Boyd [5]. This
same as that of computing a derivative. Finally, as withfilter is simpler to apply than a diffusion operator since it
computing derivatives, the filtered function will be multipledoes not require the computation of high order derivatives.
valued at element boundary points. The filtered functionThe BV filter of order p has the form
is made continuous again by taking area-weighted aver-
ages. We use the same type of averaging that is specified by
the spectral element discretization for handling multiple-s(x) 5

1
2

erfc S2 ÏpV !2
log(1 2 4V2)

4V2 D, V 5 uxu 2
1
2

,
valued derivatives. Recently a more sophisticated version
of this filter (especially with regards to smoothing across
element boundaries) was developed for the spectral ele-where erfc(x) is the complementary error function,
ment method in [15].erfc(x) 5 1 2 erf(x). The response of this filter for p 5 3,

For the spectral element model we apply the filter every6, and 12 is shown in Fig. 4.
20 min of model time, and use p 5 12, e 5 0.2, andFor a function f(x) of one variable, the filter is applied
s 5 2N/3. These parameters were chosen mostly throughas follows: Assuming f can be written as a sum of the first
experimentation. Minor improvement in the errors for cer-N Legendre polynomials Pk(x),
tain test cases can be obtained with further tuning of the
filter, but we use these values since they work for all of the

f(x) 5 ON21

k50
fkPk(x), shallow water test cases at all resolutions that we have tried.

7. SHALLOW WATER TEST CASE RESULTSthen the filtered function f 9 is given by

As a first test of the suitability of the spectral element
model for spherical geometry and ultimately climate mod-f 9(x) 5 (1 2 e)f(x) 1 e ON21

k50
wk fkPk(x),

eling, we use a standard set of shallow water test cases



SPECTRAL ELEMENTS FOR THE SPHERE 99

[21]. The existence of these test cases allows us to compare To show the insensitivity of the model to a and, thus,
the lack of any type of pole or corner problem, we plotthe spectral element model with several other methods

without having to obtain and run the other codes. The test the normalized ly , l1 , and l2 errors for different values of
a in Fig. 7. The error levels are almost identical as thecases prescribe several forms of error and how they are

to be computed so that any method can be compared cosine bell is sent around the equator, over the pole,
through the element corners, and near the element corners.objectively to several other methods by simply consulting

the literature. Test case 2 is a steady state solution of the full nonlinear
shallow water equations. It again consists of solid bodyHere we will briefly describe each test case, but we rely

on [21] for the detailed mathematical description of the rotation for the velocity, but this time we use the corre-
sponding balanced height field. Again several orientationscases and performance measures. The first four test cases

primarily determine how well the method handles spherical are specified by the parameter a. The height field consists
of lows over each pole. Test case 3 is similar to case 2geometry. They have analytic solutions making the numeri-

cal errors easy to calculate, but they have no small scale except that the wind field has compact support. It is a mid-
latitude jet and the associated height field has a single lowstructure and are thus not very realistic. More realistic

cases with complicated flows are represented in the later over the region encircled by the jet.
The errors for these two test cases are summarized intest cases. These cases lack analytic solutions and the re-

sults must be compared with high resolution runs of Table II. Plots from cases 2 and 3 are not included, primar-
ily because the errors are extremely small for all values ofother models.
a and the height fields are uninteresting. Plots for these
cases can be seen in [13]. Both these test cases again show

7.1. Test Case Results
that the spectral element model is insensitive to rotations
and thus has no coordinate-related problems.Test case 1 is the advection of a cosine bell with compact

support around the sphere. This is the only case which Case 4 tests the performance of a scheme on the full
nonlinear unsteady equations. Forcing terms are added todoes not involve the full set of shallow water equations.

The velocity is fixed (rigid rotation about an axis at an angle the shallow water equations to generate a flow with similar
structure to flows observed in the atmosphere. The flowa from the earth’s axis) and we solve only the advection

equation for the height field for 12 days (one rotation). is a translating low pressure center superimposed on a jet
stream which is symmetrical about the equator. Two casesSeveral orientations of the velocity are specified by the

parameter a: around the equator, over the poles, and minor are specified, u0 5 20 m/s and u0 5 40 m/s, where u0 is
the speed of the jet stream. We only present results for u0 5shifts from these two orientations. We also added an orien-

tation which sends the cosine bell through the corners of 20 m/s since both cases are very similar, the only difference
being that the errors for u0 5 40 m/s are systematicallythe cube in our computational grid.

Contour plots of the height field and error from case 1 larger. Contour plots of the solution and error after 5 days
on an orthographic projection centered on the center ofare shown in Fig. 5. These results are for a 96 3 16 3 16

grid (see Section 5). The analytic and computed height the low pressure cell are shown in Fig. 8. The normalized
ly , l1 , and l2 errors are also plotted as a function of time.fields are shown after one rotation of the cosine bell around

the sphere. As specified in the test case, these are plotted These results are from the 96 3 16 3 16 grid. We note that
for this case, the mean flow is removed from normalizationon an orthographic projection centered over the cosine

bell. The difference between these two are contoured in used in calculating the errors; thus the normalized errors
shown in the graph are larger than could be inferred fromthe figure, where we observe the global, low-level noise

typical of spectral methods. To quantify this spectral ‘‘ring- the contour plots.
Test case 5 is used to study the effectiveness of a schemeing,’’ the test case also calls for plotting the normalized

minimum and maximum of the height field, shown in Fig. in conserving several integral invariants of the flow. It
consists of zonal flow impinging on a mountain. No analytic6. Although this ringing shows up rather dramatically in

the contour plots, it is actually quite small, representing solution is known for this case, so the results from the
NCAR T213 spectral model are taken to be the ‘‘exact’’fluctuations of only 0.2%.

The normalized ly , l1 , and l2 errors are also plotted as solution. Contour plots of the solution and error after
15 days on a rectangular latitude/longitude projection area function of time. To compute the integrals required for

the l1 and l2 errors, we use the natural Gauss–Lobatto shown in Fig. 9. The normalized ly , l1 , and l2 errors are
also plotted as a function of time. These results are fromquadrature associated with the spectral element discretiza-

tion. The oscillations visible in the curves are similar to the 1734 3 8 3 8 grid.
In Fig. 10, we show the normalized mass, energy, andthose observed in [14]. They are due to sampling errors

as the cosine bell moves through different parts of the potential enstrophy integrals as a function of time. These
integrals are defined as in [21] and are evaluated usingcomputational grid.
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FIG. 5. Case 1. Contour plots of the height field after 12 days, for a 5 f/4. The contour interval is 100 m for the analytic and spectral element
solution, and 2 m for their difference. The cube projection has been superimposed on the contour plots. The graph shows the l1 , l2, and ly errors
plotted as a function of time, sampled hourly.

the natural Gauss–Lobatto quadrature associated with the latitude/longitude projection are shown in Fig. 11. The
normalized ly , l1 , and l2 errors are also plotted as a functionspectral element method. The energy and mass are con-

served to around eight digits, the potential enstrophy six of time. These results are from the 1734 3 8 3 8 grid. The
amplitude and phase of the R 5 4 mode of the meridionallydigits, and the vorticity and divergence integrals in units

of seconds21 remain less than 10210 (not shown.) averaged height field for this run is 178.08 m and 176.608,
respectively. These compare well with the values ofTest case 6 is the standard R 5 4 Rossby–Haurwitz

wave. This wave pattern moves from west to east without 177.11 m and 176.738 from the T213 reference solution.
Test case 7 consists of initial conditions taken from 500change of shape in the nondivergent barotropic equations.

This motion is only approximated in the shallow water mb heights and winds for several atmospheric states. These
are 0000 GMT December 21, 1978; 0000 GMT January 16,equations, so again results from the NCAR T213 spectral

model are taken to be the exact solution. Contour plots 1979; and 0000 GMT January 9, 1979, which we refer to
as cases 7a, 7b, and 7c, respectively. Contour plots of theof the solution and error after 14 days on a rectangular
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solution and error after 5 days on a north polar stereo-
graphic projection are shown in Fig. 12. Along with the
NCAR T213 reference solution, results are shown for three
different grids: 150 3 8 3 8, 486 3 8 3 8, and 1734 3
8 3 8. The l2 errors for these three cases (see Table II)
are 0.0037, 0.0013, and 0.00047, respectively. As one can
see in the figure, as the mesh is refined and the errors
reduced, noticeable improvements in the solution are ob-
tained. Many of the smaller scale features in the reference
solution are only well resolved in the 1734 3 8 3 8 result.

The difference between these three solutions and the
reference solution, along with the normalized ly , l1 , and
l2 errors are plotted in Fig. 13. The convergence of the
method to the reference solution is even more visible in
these plots than in the previous figure.

7.2. Summary of ResultsFIG. 6. Case 1. Normalized minimum and maximum of the height
field, plotted as a function of time, sampled hourly for a 5 f/4. This run

Our results along with results published in [13, 14, 10] areused the 96 3 16 3 16 grid.
summarized in Table II. For cases 1 through 4, the error
listed in the table is a normalized l2 error between the com-

FIG. 7. Case 1. The l1 , l2 , and ly errors plotted as a function of time, sampled hourly, for different values of the parameter a. The cosine bell
is advected around the equator for a 5 0, over the poles for a 5 f/2 and through the corners of the elements for a 5 f/4. These runs used the
24 3 16 3 16 grid.
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TABLE II

Results from the Spectral Element Model, the NCAR Spectral Model [13, 14], and Two Finite Difference Models, the Twisted
Icosahedral Grid and the Arakawa–Lamb Model [10]

Normalized l2 Error

Method Grid points Case 1 Case 2 Case 3 Case 4

Spec. elem. 24 3 16 3 16 6144 .02 3 3 1029 8 3 1027 .01
Spec. elem. 96 3 16 3 16 24576 .003 5 3 10213 1 3 10210 .00004

Spec. elem. 6 3 16 3 16 1536 .3 2 3 1025 1 3 1023 .28
Spec. elem. 6 3 32 3 32 6144 .03 9 3 10211 8 3 1027 .0065

NCAR T42 8192 .01 7 3 10210 7 3 10210 .002

Twisted icosahedral grid 2562 .9 1 3 1024 2 3 1024

Twisted icosahedral grid 10242 .5 4 3 1025 1 3 1024

Arakawa–Lamb 77 3 44 3168 .9 2 3 1024 6 3 1024

Method Grid points Case 5 Case 6 Case 7a

Spec. elem. 150 3 8 3 8 9600 .0019 .0091 .0037
Spec. elem. 486 3 8 3 8 31104 .00085 .0041 .0013
Spec. elem. 1734 3 8 3 8 110976 .00086 .0011 .00047

Spec. elem. 6 3 24 3 24 3456 .0015 .012 .0069
Spec. elem. 6 3 40 3 40 9600 .00086 .0079 .0030
Spec. elem. 6 3 56 3 56 18816 .00085 .0053 .0017

NCAR T42 8192 .0013 .0052 .0037
NCAR T63 18432 .0012 .0029 .0029
NCAR T106 51200 .0010 .0013 .0013

Twisted icosahedral grid 2562 .003 .02
Twisted icosahedral grid 10242 .001 .006 .005
Twisted icosahedral grid 40962 .002

Arakawa–Lamb 77 3 44 3168 .002 .01 .005

puted and analytic height field. For cases 5 through 7, ana- below these uncertainty levels. This can be observed in
test case 5, where the l2 errors for the spectral elementlytic solutions are not available, and results from the NCAR

T213 spectral model are treated as the exact solution. The model have reached the uncertainty level and no further
improvement is seen as the mesh is refined. For test caseserrors listed are those computed at the final time specified

for the test cases. For test cases 1, 2, and 3, the spectral 6 and 7, the measured errors are all substantially larger
than their reference solution uncertainty.element model was relatively insensitive to a, and all results

are given for the worst case a. The results for test case 4 are For the simple test cases with analytic solutions, Table
II shows that the two spectral models are significantly moregiven for u0 5 20 m/s, and for test case 7 we use initial data

from 0000 GMT December 21, 1978 observations. accurate than the two finite difference models. The spectral
element model with comparable resolution is not quite asThe use of the NCAR T213 reference solutions as exact

solutions presents a minor problem. These solutions do accurate as the NCAR model, but the table shows it is
possible to achieve competitive accuracy with a modestof course contain errors, and this uncertainty has been

estimated in [13, 14]. They give the uncertainty in the l2 increase in resolution. It appears doubtful that the finite
difference based models could achieve such error levels atnorm for test case 6 to be 0.0008 and for case 7 to be

0.00015. Using the same techniques, we estimate the uncer- any practical resolution. We should note that test cases 2
and 3 happen to be trivial for the NCAR model since thetainty in the l2 error for case 5 to be 0.00072. Changes in

the diffusion coefficient (or using no diffusion at all with exact solutions are expressible with only a few spherical
harmonics. Thus the NCAR model has errors close to thethe T213 run), as well as changes in the time step, result

in differences equal to or less than these uncertainties. round-off limit.
The situation is different for the more realistic test casesThus any model, even if its solution is in fact more accurate

than the T213 solution, will not be able to achieve l2 errors 5, 6, and 7. Here, all the models listed have very similar
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FIG. 8. Case 4. Contour plots of the height field after 5 days, for u0 5 20 m/s. The contour interval is 50 m for the analytic and spectral element
solution, and 0.002 m for their difference. The cube projection has been superimposed on the contour plots. The graph shows the l1 , l2 , and ly

errors plotted as a function of time, sampled hourly.

error levels, and the convergence rates are much slower. models, if one is willing to use moderately higher resolu-
tions. A careful look at the table also reveals that theFor example, in test case 5 (flow past a mountain), the l2

errors in Table II from four different models at several advantage of the NCAR model over spectral elements seen
in the analytical test cases is gone. On a per grid-point basis,resolutions only vary between 0.0008 and 0.003. The spread

in the errors for test cases 6 and 7 is only slightly larger. spectral elements perform slightly better in several cases.
However, this narrow spread does represent a significant
difference in the solutions. For example, as discussed above 8. CONCLUSIONS
for case 7 and shown in Fig. 13, results with an l2 error of
0.00047 are visibly superior to those with an l2 error of We have implemented the spectral element method for

the shallow water equations on the sphere and studied its0.0013. Due to the slow convergence rates of the spectral
models in these test cases, the finite difference models can performance using a now standard set of test cases. The

method has two types of mesh refinement: One is expensiveachieve accuracies competitive with that of the spectral
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FIG. 9. Case 5. Contour plots of the height field after 15 days. The contour interval is 100 m for the T213 and spectral element solution, and
20 m for their difference. The cube projection has been superimposed on the contour plots. The graph shows the l1 , l2 , and ly errors plotted as a
function of time, sampled daily.

but with exponential convergence, while the other is more capable of achieving similar accuracies at resolutions not
prohibitively larger than that used by the NCAR spectralefficient but has only algebraic convergence. The existence

of the test cases along with the reference solutions allowed model. Thus for atmospheric problems it might be more
productive to choose a model based on features other thanus to show that these convergence rates hold up even

in difficult nonlinear problems and to establish the most accuracy. Two such features where the spectral element
model may excel are in local mesh refinement and suitabil-efficient configuration of the model.

For the analytic test cases, the spectral element method ity for parallel computers.
is extremely accurate. For the more realistic test cases,
spectral elements again prove to be quite accurate. How- APPENDIX
ever, the spread in the performance of the various models
is much smaller than the spread seen in the analytic test In this appendix, we give the formulas for the terms used

in Section 4. We start with a sphere of radius 1 inscribedcases. For the realistic cases, it appears all the models are

FIG. 10. Case 5. Mass, energy (EN), and potential enstrophy (ENS) plotted as a function of time, sampled hourly.
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FIG. 11. Case 6. Contour plots of the height field after 14 days. The contour interval is 250 m for the T213 and spectral element solution, and
10 m for their difference. The cube projection has been superimposed on the contour plots. The graph shows the l1 , l2 , and ly errors plotted as a
function of time, sampled daily.

in a cube with sides of length 2. The coordinates are as Face 5:
described in Section 4: u for latitude, l for longitude, and
x and y (each ranging from 21 to 1) are Cartesian coordi- x 5 tan u sin l, y 5 2tan u cos l
nates in a given face of the cube. We number the six faces
of the cube as follows: faces 1 through 4 have their centers

D 5 sin u S cos l sin l

2sin u sin l sin u cos l
Dtangent to the sphere at u 5 0 and l 5 0, f/2, f, and

3f/2, respectively. Face 5 is centered at the north pole and
face 6 is centered at the south pole. We give formulas only D21 5 csc u Scos l 2csc u sin l

sin l csc u cos l
D.

for faces 1 and 5, since the others can be easily derived
from these by rotating l or changing the sign of u. The
gnomonic projection is now calculated, and these formulas One can easily check that there are no singularities in
are then differentiated to derive D, which can be easily the above terms since in face 1,
inverted to derive D21:

Face 1: 2
f
4

# u #
f
4

, 2f/4 # l # f/4;

and in face 5,x 5 tan l, y 5
tan u

cos l

f
4

# u #
f
2

.D 5 cos u cos l S cos l 0
2sin u sin l cos u

D
We now give the derivation of the divergence operatorD21 5 sec u sec l S sec l 0

tan u tan l sec u
D;

= ? v in the cube coordinate system. The formulas for
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FIG. 12. Case 7a. Contour plots of the height field at various resolutions after 5 days, with a contour interval of 100 m. The cube projection
has been superimposed on the contour plots.

the other differential operators given in Section 4 are all Using that
derived in a similar manner.

As before, we write a vector v in the two coordinate
systems by Su1

u2
D5 D Sv1

v2
D

v 5 u1l̂ 1 u2û 5 v1x 1 v2 y.

We then write the divergence operator in matrix–vector and the chain rule
form in spherical coordinates:

= ? v 5 sec u 1
­

­l

­

­u
2

T

FS1 0
0 cos u

DSu1

u2
DG. 1

­

­l

­

­u
25 Scos u 0

0 1DD2T 1
­

­x
­

­y
2,
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FIG. 13. Case 7a. Contour plots of the difference in the height field between the spectral element method and the NCAR T213 reference
solution. Three resolutions are plotted: (A) 150 3 8 3 8; (B) 486 3 8 3 8; (C) 1734 3 8 3 8. The contour interval is 50 m. The cube projection
has been superimposed on the contour plots. The graph shows the l1 , l2 , and ly errors for (C) plotted as a function of time, sampled daily.

we have where

= ? v 5 sec uScos u 0
0 1DD2T1

­

­x
­

­y
2

T

FS1 0
0 cos u

DDSv1

v2
DG.

p 5 sec u 1
­

­l

­

­u
2

T

FS1 0
0 cos u

DDG.

Matrix manipulations lead to the formula used in Section 4,

The Mathematica computer program is then used to evalu-
ate p in each face of the cube. The term q which appears= ? v 5 1

­

­x
­

­y
2

T

Sv1

v2
D1 pT Sv1

v2
D,

in the expression for the vorticity is computed in a similar
manner. The results for faces 1 and 5 are:
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